导航菜单

麻省理工学院的研究人员推出了一种用于去偏置算法的AI

导读 近期关于到麻省理工学院的研究人员推出了一种用于去偏置算法的AI这一类的信息是很多人都非常关怀的,大家也是经常在搜索关于麻省理工学院的
2021-04-08 03:47:40

近期关于到麻省理工学院的研究人员推出了一种用于去偏置算法的AI这一类的信息是很多人都非常关怀的,大家也是经常在搜索关于麻省理工学院的研究人员推出了一种用于去偏置算法的AI方面的信息,既然现在大家都想要知道此类的信息,小编就收集了一些相关的信息分享给大家。

鉴于算法在我们日常生活中的普及和普及,公平和平等待遇变得至关重要 - 去年麻省理工学院的一项研究揭示了面部识别算法中的性别和种族偏见,这一事实对许多人来说非常突出。。

这一教训似乎相当明确 - 偏见,偏见,即使参与制定培训数据集的任何特定人员都没有表现出故意识的偏见,这似乎也是正确的(有时候发现有75%的男性和超过80%的人)上述研究的白色图像)。

为了解决这个问题,麻省理工学院计算机科学与人工智能实验室(CSAIL)的一个团队目前正在开辟一种能够同时学习的算法 - 手头的任务(如人脸检测)和训练数据的基本结构,它通过重新采样自动识别和最小化偏差。

在测试中,与最新和最好的面部识别系统相比,该算法设法将“分类偏差”降低了60%以上,同时保持了其特有的整体精确度。

新系统的关键创新是,虽然它的同行至少需要人类的一些输入才干学习相关的偏见,麻省理工学院的数字“去偏置器”根本不需要手持 - 只需在其上投掷一个数据集就可以了底层结构,然后根据需要重新取样。

“特殊是面部分类是一种经常被视为'已解决'的技术,即使很明显经常使用的数据集也没有经过适当的审查,”博士说。学生Alexander Amini是本周在AIES上发表的一篇相关论文的作者。

Amini说,纠正这些问题势在必行,因为我们开始看到这些算法被用于安全,执法和其他领域。

此外,麻省理工学院团队开辟的系统可能与无法手动检查的较大数据集特殊相关,并可能扩展到其他计算机视觉应用。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

猜你喜欢:

最新文章: